Pevicon block electrophoresis - significado y definición. Qué es Pevicon block electrophoresis
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Pevicon block electrophoresis - definición

PHYSICOANALYTICAL TECHNIQUE
Agarose gel; Electrophoresis, agar gel; Agar gel electrophoresis
  • Video showing assembly of the rig and loading/running of the gel.
  • Cutting out agarose gel slices. Protective equipment must be worn when using UV transilluminator.
  • Agarose gel slab in electrophoresis tank with bands of dyes indicating progress of the electrophoresis. The DNA moves towards anode.
  • Loading DNA samples into the wells of an agarose gel using a multi-channel pipette.
  • Gels of plasmid preparations usually show a major band of supercoiled DNA with other fainter bands in the same lane. Note that by convention DNA gel is displayed with smaller DNA fragments nearer to the bottom of the gel. This is because historically DNA gels were run vertically and the smaller DNA fragments move downwards faster.
  • An agarose gel cast in tray, to be used for gel electrophoresis

Agarose gel electrophoresis         

Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the two main components of agar. The proteins may be separated by charge and/or size (isoelectric focusing agarose electrophoresis is essentially size independent), and the DNA and RNA fragments by length. Biomolecules are separated by applying an electric field to move the charged molecules through an agarose matrix, and the biomolecules are separated by size in the agarose gel matrix.

Agarose gel is easy to cast, has relatively fewer charged groups, and is particularly suitable for separating DNA of size range most often encountered in laboratories, which accounts for the popularity of its use. The separated DNA may be viewed with stain, most commonly under UV light, and the DNA fragments can be extracted from the gel with relative ease. Most agarose gels used are between 0.7–2% dissolved in a suitable electrophoresis buffer.

Free-flow electrophoresis         
  • Schematic functionality of Free Flow Electrophoresis
Wikipedia talk:Articles for creation/Free Flow Electrophoresis; Free Flow Electrophoresis
Free-flow electrophoresis (FFE), also known as carrier-free electrophoresis, is a matrix-free electrophoretic separation technique. FFE is an analogous technique to capillary electrophoresis, with a comparable resolution, that can used for scientific questions, where semi-preparative and preparative amounts of samples are needed.
Block (permutation group theory)         
TERM IN MATHEMATICS AND GROUP THEORY
Block system
In mathematics and group theory, a block system for the action of a group G on a set X is a partition of X that is G-invariant. In terms of the associated equivalence relation on X, G-invariance means that

Wikipedia

Agarose gel electrophoresis

Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the two main components of agar. The proteins may be separated by charge and/or size (isoelectric focusing agarose electrophoresis is essentially size independent), and the DNA and RNA fragments by length. Biomolecules are separated by applying an electric field to move the charged molecules through an agarose matrix, and the biomolecules are separated by size in the agarose gel matrix.

Agarose gel is easy to cast, has relatively fewer charged groups, and is particularly suitable for separating DNA of size range most often encountered in laboratories, which accounts for the popularity of its use. The separated DNA may be viewed with stain, most commonly under UV light, and the DNA fragments can be extracted from the gel with relative ease. Most agarose gels used are between 0.7–2% dissolved in a suitable electrophoresis buffer.